Digital System Design

Hectilie 13
 Connimaitona Logic Design

Binary Miulitipliers and Decoders

Objectives:

1. Multipliers:
1.1 Multiplication of two 2-bit numbers.
1.2 Combinational circuit of binary multiplier with more bits.
2. Decoders:
2.1) 2×4 decoder (Active-high).
2.2) Active-low decoders.
2.3) Decoders with enable inputs.
2.4) Three-to-eight-line decoder circuit.
2.5) Larger decoder circuit.
2.6) Combinational logic implementation.
1) Multipliers:
> Multiplication of binary numbers is performed in the same way as multiplication of decimal numbers:
1.1 Multiplication of two 2-bit numbers.

		$\begin{aligned} & \boldsymbol{B}_{1} \\ & \boldsymbol{A}_{1} \end{aligned}$	$\begin{aligned} & \boldsymbol{B}_{0} \\ & \boldsymbol{A}_{0} \end{aligned}$	(Multiplicand) (Multiplier)
	$A_{1} B_{1}$	$\begin{aligned} & \overline{A_{0} B_{1}} \\ & A_{1} B_{0} \end{aligned}$	$A_{0} B$	\longrightarrow Partial Product
Possible	carry ${ }_{\text {¢ }}$	$A_{0} \boldsymbol{A}_{0} B_{1}$ $+{ }_{A_{1} B_{0}}$	${ }_{\text {A }}^{0} B_{0}$	
	C_{2}	C_{1}	C_{0}	Final Product (the sum of the partial products)

Combinational circuit

$>$ The multiplication of two bits such as A_{0} and B_{0} produces a 1 if both bits are 1 ; otherwise, it produces a 0 , this is identical to an AND operation.
$>$ The two partial products are added with two half-adder (HA) circuits (if there are more than two bits, we must use full adder (FA)).

Two-bit by Two-bit binary multilplier

1.2 Combinational circuit of binary multiplier with more bits.

For J bits multiplier and K bits multiplicand, we need:
$J \times K$ AND gates.
$(J-1) K$-bits adders to produce a product of $J+K$ bits.

Example: - Create a logic circuit for

Solution:

$$
\begin{aligned}
& K=4 \\
& J=3
\end{aligned}
$$

So:
We need 12 AND gates and 2 four-bit adders to produce a product of seven bits: $C_{6} C_{5} C_{4} C_{3} C_{2} C_{1} C_{0}$.

Circuit Implementation:

2) Decoders

Information is represented in digital system by binary codes. A binary code of n bits is capable of representing up to 2^{n} distinct elements of coded information.
> A decoder is a combinational circuit that covers binary information from n input lines to a maximum of 2^{n} unique output lines.
$>$ The decoders are called $n-t o-m$ line decoders, where $m \leq 2^{n}$ (for example BCD-to-seven-segment decoder, 3 - to - 8 decoder).
$>$ The purpose of the decoders is to generate the 2^{n} (or fewer) minterms of n input variables.
$>$ Decoder is a circuit that allows us to activate an output line by specifying a control word; it is either active-high or active-low.

- Active-high sets a particular output to logic 1. While remaining other outputs to logic 0 .
- Active-low sets a particular output to logic 0, other outputs to logic 1 .
2.1) 2×4 decoder (Active-high)

$$
\begin{aligned}
& \text { 1. } S_{1}=0, S_{0}=0 \Rightarrow D_{0}=1 \\
& D_{0}=\overline{S_{1}} \cdot S_{0} ; D_{1}=D_{2}=D_{3}=0 \\
& \text { 2. } S_{1}=0, S_{0}=1=D_{1}=1 \\
& D_{1}=\overline{S_{1}} \cdot S_{0} ; D_{0}=D_{2}=D_{3}=0 \\
& \text { 3. } S_{1}=1, S_{0}=0 \Rightarrow D_{2}=1 \\
& D_{2}=S_{1} \cdot S_{0} ; D_{0}=D_{1}=D_{3}=0
\end{aligned}
$$

4. $S_{1}=1, S_{0}=1 \Rightarrow D_{3}=1$
$D_{3}=S_{1} \cdot S_{0} ; D_{0}=D_{1}=D_{2}=0$

Inputs Select Lines		Output Output Lines			
$S_{\mathbf{1}}$	$S_{\mathbf{0}}$	$D_{\mathbf{3}}$	$D_{\mathbf{2}}$	$D_{\mathbf{1}}$	$D_{\mathbf{0}}$
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0
Truth table					

From truth table:
\checkmark Two inputs are decoded to 4 outputs.
\checkmark Each output represents one of the minterms of the three input variables.
\checkmark For each possible combination (input), there are 3 outputs that are equal to 0 and only one that is equal to 1 .

2.2) Active-low decoders

AND becomes NAND

$$
\begin{aligned}
D_{0} & =\overline{\overline{S_{1}}} \overline{S_{0}} \text { Complement } \\
& =S_{1}+S_{0} \\
D_{1} & =\overline{\overline{S_{1}}} . S_{0} \\
D_{2} & =\overline{S_{1}}+S_{1}+\overline{S_{0}} ; \\
D_{3} & =\overline{S_{1}}+\overline{S_{0}}
\end{aligned}
$$

2.3) Decoders with enable inputs

> Some decoders include one or more enable inputs to control the circuit operation.
$>A$ two-to-four line decoder with an enable input_constructed with NAND gate is the following:

Inputs			Output Output Lines			
E	$S_{\mathbf{1}}$	$S_{\mathbf{0}}$	$D_{\mathbf{3}}$	$D_{\mathbf{2}}$	$D_{\mathbf{1}}$	$D_{\mathbf{0}}$
1	X	X	1	1	1	1
0	0	0	1	1	1	0
0	0	1	1	1	0	1
0	1	0	1	0	1	1
0	1	1	0	1	1	1
Truth table						

Active-Low Decoder Logic Circuit with enable input
$>$ The circuit operates with complemented output and a complemented enable input (Active-Low Enable):
$\checkmark E=0$ then the decoder is enabled.
$\checkmark E=1$ then the decoder is disabled.
$>$ The enable input may be active with 0 or with a 1 signal.

2.4) Three-to-eight-line decoder circuit

inputs				outputs								
X	Y	Z	D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}		
0	0	0	1	0	0	0	0	0	0	0		
0	0	1	0	1	0	0	0	0	0	0		
0	1	0	0	0	1	0	0	0	0	0		
0	1	1	0	0	0	1	0	0	0	0		
1	0	0	0	0	0	0	1	0	0	0		
1	0	1	0	0	0	0	0	1	0	0		
1	1	0	0	0	0	0	0	0	1	0		
1	1	1	0	0	0	0	0	0	0	1		

Decoder Logic Diagram

2.5) Larger decoder circuit.

$>$ Decoders with enable inputs can be connected together to form a larger decoder circuit.
\rightarrow To design a $4-$ to -16 line decoder. Using two $3-$ to -8 decoders with enable inputs, we do the following connection:
\checkmark When $W=0$ the top decoder is enable and the other is disable:
The bottom decoder outputs are all 0 's and the top eight outputs generate minterms 0000 to 0111.
\checkmark When $W=1$ the enable condition is reversed, the bottom decoder outputs generate minterms 1000 to 1111.

2.6) Combinational logic implementation:

Since, a decoder provides the 2^{n} minterms of n input, and any Boolean function can be expressed in sum-of-minterms form, A decoder that generates the minterms of the functions, together with an external OR gate that forms their logical sum, provides a hardware implementation of the function.
\Rightarrow In this way, any combinational circuit with n inputs and m outputs can be implemented using $n-$ to -2^{n} line decoder and m OR gates.
$>$ The procedure for implementing a combinational circuit by means of decoders and OR gates requires that the Boolean function for the circuit be expressed as a sum of minterms.

Example:-Implementation a full-adder circuit using the decoders.

> From the truth table of the full adder, we obtain the functions for the sum and carry in sum-of-minterms form:

$$
\begin{aligned}
& S\left(X, Y, C_{\text {in }}\right)=\sum(1,2,4,7) \\
& C_{\text {out }}\left(X, Y, C_{\text {in }}\right)=\sum(3,5,6,7)
\end{aligned}
$$

$>$ We have 3 inputs: so, we need a three-to-eight line decoder.

